Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Evol ; 10(1): veae025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566975

RESUMO

The increase in human-mediated introduction of plant species to new regions has resulted in a rise of invasive exotic plant species (IEPS) that has had significant effects on biodiversity and ecosystem processes. One commonly accepted mechanism of invasions is that proposed by the enemy release hypothesis (ERH), which states that IEPS free from their native herbivores and natural enemies in new environments can outcompete indigenous species and become invasive. We here propose the virome release hypothesis (VRH) as a virus-centered variant of the conventional ERH that is only focused on enemies. The VRH predicts that vertically transmitted plant-associated viruses (PAV, encompassing phytoviruses and mycoviruses) should be co-introduced during the dissemination of the IEPS, while horizontally transmitted PAV of IEPS should be left behind or should not be locally transmitted in the introduced area due to a maladaptation of local vectors. To document the VRH, virome richness and composition as well as PAV prevalence, co-infection, host range, and transmission modes were compared between indigenous plant species and an invasive grass, cane bluestem (Bothriochloa barbinodis), in both its introduced range (southern France) and one area of its native range (Sonoran Desert, Arizona, USA). Contrary to the VRH, we show that invasive populations of B. barbinodis in France were not associated with a lower PAV prevalence or richness than native populations of B. barbinodis from the USA. However, comparison of virome compositions and network analyses further revealed more diverse and complex plant-virus interactions in the French ecosystem, with a significant richness of mycoviruses. Setting mycoviruses apart, only one putatively vertically transmitted phytovirus (belonging to the Amalgaviridae family) and one putatively horizontally transmitted phytovirus (belonging to the Geminiviridae family) were identified from B. barbinodis plants in the introduced area. Collectively, these characteristics of the B. barbinodis-associated PAV community in southern France suggest that a virome release phase may have immediately followed the introduction of B. barbinodis to France in the 1960s or 1970s, and that, since then, the invasive populations of this IEPS have already transitioned out of this virome release phase, and have started interacting with several local mycoviruses and a few local plant viruses.

2.
Arch Virol ; 169(4): 77, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517556

RESUMO

Papillomaviruses are small circular DNA viruses that infect epithelial and mucosal cells and have co-evolved with their hosts. Some papillomaviruses in mammals are well studied (especially those associated with disease). However, there is limited information on papillomaviruses associated with avian hosts. From a cloacal swab sample of a mallard (Anas platyrhynchos) sampled in Missouri, USA (6 Jan 2023), we identified a papillomavirus (7839 nt) that shares ~68% genome-wide nucleotide sequence identity with Anas platyrhynchos papillomavirus 1 (AplaPV1) from a mallard sampled in Newfoundland (Canada) and ~40% with AplaPV2 from a mallard sampled in Minnesota (USA) with mesenchymal dermal tumors. The papillomavirus we identified shares 73.6% nucleotide sequence identity in the L1 gene with that of AplaPV1 and thus represents a new AplaPV type (AplaPV3). The genome sequence of AplaPV3 shares >97% identity with three partial PV genome sequences (1316, 1997, and 4241 nt) identified in a mallard in India, indicating that that virus was also AplaPV3.


Assuntos
Aves , Patos , Animais , Missouri , Genoma , Canadá , Mamíferos
3.
Virology ; 594: 110064, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522135

RESUMO

Papillomaviruses (family Papillomaviridae) are non-enveloped, circular, double-stranded DNA viruses known to infect squamous and mucosal epithelial cells. In the family Papillomaviridae there are 53 genera and 133 viral species whose members infect a variety of mammalian, avian, reptilian, and fish species. Within the Antarctic context, papillomaviruses (PVs) have been identified in Adélie penguins (Pygoscelis adeliae, 2 PVs), Weddell seals (Leptonychotes weddellii, 7 PVs), and emerald notothen (Trematomus bernacchii, 1 PV) in McMurdo Sound and Ross Island in eastern Antarctica. Here we identified 13 diverse PVs from buccal swabs of Antarctic fur seals (Arctocephalus gazella, 2 PVs) and leopard seal (Hydrurga leptonyx, 3 PVs) in western Antarctica (Antarctic Peninsula), and vaginal and nasal swabs of Weddell seals (8 PVs) in McMurdo Sound. These PV genomes group into four genera representing 11 new papillomavirus types, of which five are from two Antarctic fur seals and a leopard seal and six from Weddell seals.


Assuntos
Otárias , Focas Verdadeiras , Animais , Feminino , Regiões Antárticas , Aves , Papillomaviridae/genética
4.
Microorganisms ; 12(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38258021

RESUMO

American wigeons (Mareca americana) are waterfowls that are widely distributed throughout North America. Research of viruses associated with American wigeons has been limited to orthomyxoviruses, coronaviruses, and circoviruses. To address this poor knowledge of viruses associated with American wigeons, we undertook a pilot study to identify small circular DNA viruses in a fecal sample collected in January 2021 in the city of Tempe, Arizona (USA). We identified 64 diverse circular DNA viral genomes using a viral metagenomic workflow biased towards circular DNA viruses. Of these, 45 belong to the phylum Cressdnaviricota based on their replication-associated protein sequence, with 3 from the Genomoviridae family and the remaining 42 which currently cannot be assigned to any established virus group. It is most likely that these 45 viruses infect various organisms that are associated with their diet or environment. The remaining 19 virus genomes are part of the Microviridae family and likely associated with the gut enterobacteria of American wigeons.

5.
Arch Virol ; 169(1): 12, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38151635

RESUMO

Coyotes (Canis latrans) have a broad geographic distribution across North and Central America. Despite their widespread presence in urban environments in the USA, there is limited information regarding viruses associated with coyotes in the USA and in particular the state of Arizona. To explore viruses associated with coyotes, particularly small DNA viruses, 44 scat samples were collected (April-June 2021 and November 2021-January 2022) along the Salt River near Phoenix, Arizona (USA), along 43 transects (500 m). From these samples, we identified 11 viral genomes: two novel circoviruses, six unclassified cressdnaviruses, and two anelloviruses. One of the circoviruses is most closely related to a circovirus sequence identified from an aerosolized dust sample in Arizona, USA. The second circovirus is most closely related to a rodent-associated circovirus and canine circovirus. Of the unclassified cressdnaviruses, three encode replication-associated proteins that are similar to those found in protists (Histomonas meleagridis and Monocercomonoides exilis), implying an evolutionary relationship with or a connection to similar unidentified protist hosts. The two anelloviruses are most closely related to those found in rodents, and this suggests a diet-related identification.


Assuntos
Coiotes , DNA Circular , Animais , Cães , Arizona , Vírus de DNA/genética
6.
Arch Virol ; 168(11): 277, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864606

RESUMO

The family Anelloviridae comprises negative single-stranded circular DNA viruses. Within this family, there are 30 established genera. Anelloviruses in the genus Gyrovirus have been identified infecting various avian species, whereas those in the remaining 29 genera have been found primarily infecting various mammal species. We renamed the 146 anellovirus species with binomial species names, as required by the International Committee on Taxonomy of Viruses (ICTV) using a "genus + freeform epithet" format.


Assuntos
Anelloviridae , Gyrovirus , Vírus , Animais , Anelloviridae/genética , Mamíferos
7.
Arch Virol ; 168(10): 253, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715108

RESUMO

Rodents are the largest and most diverse group of mammals. Covering a wide range of structural and functional adaptations, rodents successfully occupy virtually every terrestrial habitat, and they are often found in close association with humans, domestic animals, and wildlife. Although a significant amount of research has focused on rodents' prominence as known reservoirs of zoonotic viruses, there has been less emphasis on the viral ecology of rodents in general. Here, we utilized a viral metagenomics approach to investigate polyomaviruses in wild rodents from the Baja California peninsula, Mexico, using fecal samples. We identified a novel polyomavirus in fecal samples from two rodent species, a spiny pocket mouse (Chaetodipus spinatus) and a Dulzura kangaroo rat (Dipodomys simulans). These two polyomaviruses represent a new species in the genus Betapolyomavirus. Sequences of this polyomavirus cluster phylogenetically with those of other rodent polyomaviruses and two other non-rodent polyomaviruses (WU and KI) that have been identified in the human respiratory tract. Through our continued work on seven species of rodents, we endeavor to explore the viral diversity associated with wild rodents on the Baja California peninsula and expand on current knowledge of rodent viral ecology and evolution.


Assuntos
Polyomavirus , Roedores , Animais , Humanos , Camundongos , Polyomavirus/genética , México , Polyomaviridae , Animais Domésticos
8.
Viruses ; 15(9)2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37766228

RESUMO

The diversity of viruses identified from the various niches of the human oral cavity-from saliva to dental plaques to the surface of the tongue-has accelerated in the age of metagenomics. This rapid expansion demonstrates that our understanding of oral viral diversity is incomplete, with only a few studies utilizing passive drool collection in conjunction with metagenomic sequencing methods. For this pilot study, we obtained 14 samples from healthy staff members working at the Duke Lemur Center (Durham, NC, USA) to determine the viral diversity that can be identified in passive drool samples from humans. The complete genomes of 3 anelloviruses, 9 cressdnaviruses, 4 Caudoviricetes large bacteriophages, 29 microviruses, and 19 inoviruses were identified in this study using high-throughput sequencing and viral metagenomic workflows. The results presented here expand our understanding of the vertebrate-infecting and microbe-infecting viral diversity of the human oral virome in North Carolina (USA).


Assuntos
Anelloviridae , Bacteriófagos , Lemur , Humanos , Animais , North Carolina , Projetos Piloto , Viroma , DNA
9.
EMBO Mol Med ; 15(9): e17376, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37534622

RESUMO

SARS-CoV-2 acute respiratory distress syndrome (ARDS) induces uncontrolled lung inflammation and coagulopathy with high mortality. Anti-viral drugs and monoclonal antibodies reduce early COVID-19 severity, but treatments for late-stage immuno-thrombotic syndromes and long COVID are limited. Serine protease inhibitors (SERPINS) regulate activated proteases. The myxoma virus-derived Serp-1 protein is a secreted immunomodulatory serpin that targets activated thrombotic, thrombolytic, and complement proteases as a self-defense strategy to combat clearance. Serp-1 is effective in multiple animal models of inflammatory lung disease and vasculitis. Here, we describe systemic treatment with purified PEGylated Serp-1 as a therapy for immuno-coagulopathic complications during ARDS. Treatment with PEGSerp-1 in two mouse-adapted SARS-CoV-2 models in C57Bl/6 and BALB/c mice reduced lung and heart inflammation, with improved outcomes. PEGSerp-1 significantly reduced M1 macrophages in the lung and heart by modifying urokinase-type plasminogen activator receptor (uPAR), thrombotic proteases, and complement membrane attack complex (MAC). Sequential changes in gene expression for uPAR and serpins (complement and plasminogen inhibitors) were observed. PEGSerp-1 is a highly effective immune-modulator with therapeutic potential for severe viral ARDS, immuno-coagulopathic responses, and Long COVID.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Serpinas , Camundongos , Animais , Humanos , Serpinas/uso terapêutico , Serpinas/metabolismo , Serpinas/farmacologia , SARS-CoV-2 , Síndrome Pós-COVID-19 Aguda , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Peptídeo Hidrolases
10.
Virus Evol ; 9(1): vead035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325085

RESUMO

Anelloviruses are highly prevalent in diverse mammals, including humans, but so far have not been linked to any disease and are considered to be part of the 'healthy virome'. These viruses have small circular single-stranded DNA (ssDNA) genomes and encode several proteins with no detectable sequence similarity to proteins of other known viruses. Thus, anelloviruses are the only family of eukaryotic ssDNA viruses currently not included in the realm Monodnaviria. To gain insights into the provenance of these enigmatic viruses, we sequenced more than 250 complete genomes of anelloviruses from nasal and vaginal swab samples of Weddell seal (Leptonychotes weddellii) from Antarctica and a fecal sample of grizzly bear (Ursus arctos horribilis) from the USA and performed a comprehensive family-wide analysis of the signature anellovirus protein ORF1. Using state-of-the-art remote sequence similarity detection approaches and structural modeling with AlphaFold2, we show that ORF1 orthologs from all Anelloviridae genera adopt a jelly-roll fold typical of viral capsid proteins (CPs), establishing an evolutionary link to other eukaryotic ssDNA viruses, specifically, circoviruses. However, unlike CPs of other ssDNA viruses, ORF1 encoded by anelloviruses from different genera display remarkable variation in size, due to insertions into the jelly-roll domain. In particular, the insertion between ß-strands H and I forms a projection domain predicted to face away from the capsid surface and function at the interface of virus-host interactions. Consistent with this prediction and supported by recent experimental evidence, the outermost region of the projection domain is a mutational hotspot, where rapid evolution was likely precipitated by the host immune system. Collectively, our findings further expand the known diversity of anelloviruses and explain how anellovirus ORF1 proteins likely diverged from canonical jelly-roll CPs through gradual augmentation of the projection domain. We suggest assigning Anelloviridae to a new phylum, 'Commensaviricota', and including it into the kingdom Shotokuvirae (realm Monodnaviria), alongside Cressdnaviricota and Cossaviricota.

11.
Virology ; 585: 42-60, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37276766

RESUMO

Rodentia is the most speciose order of mammals, and they are known to harbor a wide range of viruses. Although there has been significant research on zoonotic viruses in rodents, research on the diversity of other viruses has been limited, especially for rodents in the families Cricetidae and Heteromyidae. In fecal and liver samples of nine species of rodents, we identify 346 distinct circular DNA viral genomes. Of these, a large portion are circular, single-stranded DNA viruses in the families Anelloviridae (n = 3), Circoviridae (n = 5), Genomoviridae (n = 7), Microviridae (n = 297), Naryaviridae (n = 4), Vilyaviridae (n = 15) and in the phylum Cressdnaviricota (n = 13) that cannot be assigned established families. We also identified two large bacteriophages of 36 and 50 kb that are part of the class Caudoviricetes. Some of these viruses are clearly those that infect rodents, however, most of these likely infect various organisms associated with rodents, their environment or their diet.


Assuntos
Roedores , Vírus , Animais , Filogenia , Vírus de DNA/genética , Vírus/genética , Mamíferos , Genoma Viral
12.
Microbiol Resour Announc ; 12(6): e0029923, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37199625

RESUMO

South polar skuas migrate from subtropical regions to breed along coastal Antarctica. In a fecal sample collected on Ross Island, Antarctica, we identified 20 diverse microviruses (Microviridae) that share low levels of similarity to currently known microviruses; 6 appear to use a Mycoplasma/Spiroplasma codon translation table.

13.
Sci Total Environ ; 877: 162862, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933724

RESUMO

Wastewater-based epidemiology (WBE) is a non-invasive and cost-effective approach for monitoring the spread of a pathogen within a community. WBE has been adopted as one of the methods to monitor the spread and population dynamics of the SARS-CoV-2 virus, but significant challenges remain in the bioinformatic analysis of WBE-derived data. Here, we have developed a new distance metric, CoVdist, and an associated analysis tool that facilitates the application of ordination analysis to WBE data and the identification of viral population changes based on nucleotide variants. We applied these new approaches to a large-scale dataset from 18 cities in nine states of the USA using wastewater collected from July 2021 to June 2022. We found that the trends in the shift between the Delta and Omicron SARS-CoV-2 lineages were largely consistent with what was seen in clinical data, but that wastewater analysis offered the added benefit of revealing significant differences in viral population dynamics at the state, city, and even neighborhood scales. We also were able to observe the early spread of variants of concern and the presence of recombinant lineages during the transitions between variants, both of which are challenging to analyze based on clinically-derived viral genomes. The methods outlined here will be beneficial for future applications of WBE to monitor SARS-CoV-2, particularly as clinical monitoring becomes less prevalent. Additionally, these approaches are generalizable, allowing them to be applied for the monitoring and analysis of future viral outbreaks.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Estados Unidos/epidemiologia , SARS-CoV-2/genética , COVID-19/epidemiologia , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
14.
Virology ; 580: 98-111, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36801670

RESUMO

Bats (order Chiroptera) are some of the most abundant mammals on earth and their species ecology strongly influences zoonotic potential. While substantial research has been conducted on bat-associated viruses, particularly on those that can cause disease in humans and/or livestock, globally, limited research has focused on endemic bats in the USA. The southwest region of the US is of particular interest because of its high diversity of bat species. We identified 39 single-stranded DNA virus genomes in the feces of Mexican free-tailed bats (Tadarida brasiliensis) sampled in the Rucker Canyon (Chiricahua Mountains) of southeast Arizona (USA). Twenty-eight of these belong to the virus families Circoviridae (n = 6), Genomoviridae (n = 17), and Microviridae (n = 5). Eleven viruses cluster with other unclassified cressdnaviruses. Most of the viruses identified represent new species. Further research on identification of novel bat-associated cressdnaviruses and microviruses is needed to provide greater insights regarding their co-evolution and ecology relative to bats.


Assuntos
Quirópteros , Animais , Humanos , Arizona , Vírus de DNA , Genoma Viral , Fezes , DNA
15.
Virus Evol ; 9(1): veac122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36694819

RESUMO

Spatially heterogeneous landscape factors such as urbanisation can have substantial effects on the severity and spread of wildlife diseases. However, research linking patterns of pathogen transmission to landscape features remains rare. Using a combination of phylogeographic and machine learning approaches, we tested the influence of landscape and host factors on feline immunodeficiency virus (FIVLru) genetic variation and spread among bobcats (Lynx rufus) sampled from coastal southern California. We found evidence for increased rates of FIVLru lineage spread through areas of higher vegetation density. Furthermore, single-nucleotide polymorphism (SNP) variation among FIVLru sequences was associated with host genetic distances and geographic location, with FIVLru genetic discontinuities precisely correlating with known urban barriers to host dispersal. An effect of forest land cover on FIVLru SNP variation was likely attributable to host population structure and differences in forest land cover between different populations. Taken together, these results suggest that the spread of FIVLru is constrained by large-scale urban barriers to host movement. Although urbanisation at fine spatial scales did not appear to directly influence virus transmission or spread, we found evidence that viruses transmit and spread more quickly through areas containing higher proportions of natural habitat. These multiple lines of evidence demonstrate how urbanisation can change patterns of contact-dependent pathogen transmission and provide insights into how continued urban development may influence the incidence and management of wildlife disease.

16.
Arch Virol ; 168(1): 23, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36593430

RESUMO

Viruses in the family Circoviridae have small circular single-stranded DNA (ssDNA) genomes. Circoviruses are known to infect a wide variety of animals, with notable disease pathology in psittacine (psittacine beak and feather disease) and porcine (postweaning multisystemic wasting syndrome) species. There is still a dearth of research investigating circoviruses associated with felid species. In six fecal samples collected from bobcats (Lynx rufus) in California from 2010 to 2011, we identified six viruses belonging to the genera Circovirus (n = 1) and Cyclovirus (n = 5), using a high-throughput-sequencing-based approach. Of these, the virus in the genus Circovirus represents a new species, as it shares only 54-60% genome-wide sequence identity with the other members of this genus. The five viruses in the genus Cyclovirus represent three new species, sharing <73% genome-wide sequence identity with all other cycloviruses. Three of the cycloviruses belong to a single putative species and were obtained from the feces of three individual bobcats, sharing 95.7-99.9% sequence identity, whereas the other two unique cycloviruses were identified in a single fecal sample. At present, it is unknown whether the identified viruses infect bobcats, their prey, or their gut parasites.


Assuntos
Circoviridae , Circovirus , Lynx , Animais , Suínos , Circoviridae/genética , Circovirus/genética , California , Fezes , DNA de Cadeia Simples , Filogenia , Genoma Viral
17.
Microbiol Resour Announc ; 12(2): e0123322, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36700633

RESUMO

Sharp-spined notothen (Trematomus pennellii) is an icefish endemic to the southern ocean. From the stomach of an individual, we identified the genomes of 51 microviruses (family Microviridae). The major capsid proteins of most of these share the closest similarities to those identified in other marine organisms.

18.
Arch Virol ; 168(1): 18, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36593361

RESUMO

Polyomaviruses are oncogenic viruses that are generally thought to have co-evolved with their hosts. While primate and rodent polyomaviruses are increasingly well-studied, less is known about polyomaviruses that infect other mammals. In an effort to gain insight into polyomaviruses associated with carnivores, we surveyed fecal samples collected in the USA from bobcats (Lynx rufus), pumas (Puma concolor), Canada lynxes (Lynx canadensis), and grizzly bears (Ursus arctos). Using a viral metagenomic approach, we identified six novel polyomavirus genomes. Surprisingly, four of the six genomes showed a phylogenetic relationship to polyomaviruses found in prey animals. These included a putative rabbit polyomavirus from a bobcat fecal sample and two possible deer-trophic polyomaviruses from Canada lynx feces. One polyomavirus found in a grizzly bear sample was found to be phylogenetically distant from previously identified polyomaviruses. Further analysis of the grizzly bear fecal sample showed that it contained anelloviruses that are known to infect pigs, suggesting that the bear might have preyed on a wild or domestic pig. Interestingly, a polyomavirus genome identified in a puma fecal sample was found to be closely related both to raccoon polyomavirus 1 and to Lyon-IARC polyomavirus, the latter of which was originally identified in human saliva and skin swab specimens but has since been found in samples from domestic cats (Felis catus).


Assuntos
Cervos , Lynx , Polyomavirus , Puma , Ursidae , Coelhos , Animais , Gatos , Humanos , Suínos , Polyomavirus/genética , Filogenia , Fezes
19.
Lancet Microbe ; 4(1): e29-e37, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493788

RESUMO

BACKGROUND: Before the COVID-19 pandemic, the US opioid epidemic triggered a collaborative municipal and academic effort in Tempe, Arizona, which resulted in the world's first open access dashboard featuring neighbourhood-level trends informed by wastewater-based epidemiology (WBE). This study aimed to showcase how wastewater monitoring, once established and accepted by a community, could readily be adapted to respond to newly emerging public health priorities. METHODS: In this population-based study in Greater Tempe, Arizona, an existing opioid monitoring WBE network was modified to track SARS-CoV-2 transmission through the analysis of 11 contiguous wastewater catchments. Flow-weighted and time-weighted 24 h composite samples of untreated wastewater were collected at each sampling location within the wastewater collection system for 3 days each week (Tuesday, Thursday, and Saturday) from April 1, 2020, to March 31, 2021 (Area 7 and Tempe St Luke's Hospital were added in July, 2020). Reverse transcription quantitative PCR targeting the E gene of SARS-CoV-2 isolated from the wastewater samples was used to determine the number of genome copies in each catchment. Newly detected clinical cases of COVID-19 by zip code within the City of Tempe, Arizona were reported daily by the Arizona Department of Health Services from May 23, 2020. Maricopa County-level new positive cases, COVID-19-related hospitalisations, deaths, and long-term care facility deaths per day are publicly available and were collected from the Maricopa County Epidemic Curve Dashboard. Viral loads of SARS-CoV-2 (genome copies per day) measured in wastewater from each catchment were aggregated at the zip code level and city level and compared with the clinically reported data using root mean square error to investigate early warning capability of WBE. FINDINGS: Between April 1, 2020, and March 31, 2021, 1556 wastewater samples were analysed. Most locations showed two waves in viral levels peaking in June, 2020, and December, 2020-January, 2021. An additional wave of viral load was seen in catchments close to Arizona State University (Areas 6 and 7) at the beginning of the fall (autumn) semester in late August, 2020. Additionally, an early infection hotspot was detected in the Town of Guadalupe, Arizona, starting the week of May 4, 2020, that was successfully mitigated through targeted interventions. A shift in early warning potential of WBE was seen, from a leading (mean of 8·5 days [SD 2·1], June, 2020) to a lagging (-2·0 days [1·4], January, 2021) indicator compared with newly reported clinical cases. INTERPRETATION: Lessons learned from leveraging an existing neighbourhood-level WBE reporting dashboard include: (1) community buy-in is key, (2) public data sharing is effective, and (3) sub-ZIP-code (postal code) data can help to pinpoint populations at risk, track intervention success in real time, and reveal the effect of local clinical testing capacity on WBE's early warning capability. This successful demonstration of transitioning WBE efforts from opioids to COVID-19 encourages an expansion of WBE to tackle newly emerging and re-emerging threats (eg, mpox and polio). FUNDING: National Institutes of Health's RADx-rad initiative, National Science Foundation, Virginia G Piper Charitable Trust, J M Kaplan Fund, and The Flinn Foundation.


Assuntos
COVID-19 , Prioridades em Saúde , Águas Residuárias , Humanos , Acesso à Informação , Analgésicos Opioides , COVID-19/epidemiologia , Pandemias , Projetos de Pesquisa , SARS-CoV-2 , Estados Unidos
20.
Viruses ; 16(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38257737

RESUMO

The Papillomaviridae are a family of vertebrate-infecting viruses of oncogenic potential generally thought to be host species- and tissue-specific. Despite their phylogenetic relatedness to humans, there is a scarcity of data on papillomaviruses (PVs) in speciose non-human primate lineages, particularly the lemuriform primates. Varecia variegata (black-and-white ruffed lemurs) and Varecia rubra (red ruffed lemurs), two closely related species comprising the Varecia genus, are critically endangered with large global captive populations. Varecia variegata papillomavirus (VavPV) types -1 and -2, the first PVs in lemurs with a fully identified genome, were previously characterized from captive V. variegata saliva. To build upon this discovery, saliva samples were collected from captive V. rubra with the following aims: (1) to identify PVs shared between V. variegata and V. rubra and (2) to characterize novel PVs in V. rubra to better understand PV diversity in the lemuriform primates. Three complete PV genomes were determined from V. rubra samples. Two of these PV genomes share 98% L1 nucleotide identity with VavPV2, denoting interspecies infection of V. rubra by VavPV2. This work represents the first reported case of interspecies PV infection amongst the strepsirrhine primates. The third PV genome shares <68% L1 nucleotide identity with that of all PVs. Thus, it represents a new PV species and has been named Varecia rubra papillomavirus 1 (VarPV1). VavPV1, VavPV2, and VarPV1 form a new clade within the Papillomaviridae family, likely representing a novel genus. Future work diversifying sample collection (i.e., lemur host species from multiple genera, sample type, geographic location, and wild populations) is likely to uncover a world of diverse lemur PVs.


Assuntos
Lemur , Lemuridae , Strepsirhini , Viroses , Animais , Nucleotídeos , Papillomaviridae/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...